

Segment Length

Number of segments	Segment Length	Set Saw Stop
6	.5774 x Dia.	.5 x Dia.
8	.4142 x Dia.	.3826 x Dia.
12	.2679 x Dia.	.2588 x Dia.
16	.1989 x Dia.	.1951 x Dia.
18	.1763 x Dia.	.1736 x Dia.
20	.1583 x Dia.	.1564 x Dia.
24	.1317 x Dia.	.1306 x Dia.
30	.1051 x Dia.	.1045 x Dia.
32	.0985 x Dia.	.09802 x Dia.
36	.0875 x Dia.	.08716 x Dia.
38	.08286 x Dia.	.082579 x Dia.
40	.0787 x Dia.	.07845 x Dia.
48	.0655 x Dia.	.06536 x Dia.

You can get the length factor for any number of segments in a ring with the following formula.

Length factor= $\tan(180/\text{no segments})$

You can also get the saw stop length factor for any number of segments in a ring with the following formula.

Length factor= $\tan(180/\text{no segments}) \cos(180/\text{no segments})$